广州市亚虎动力设备有限公司
异步发电机在风力发电中的应用
风力发电是当今新能源应用的重要方向。包含异步电机和电力电子变换器的风力发电系统具有良好的应用前景。本文介绍了我国风力产业的现状与发展展望,分析了笼型异步电机和绕线型异步电机在大型风电基地、海上发电和离网式应用中的优势。
为了缓解能源危机、环境污染和发展低碳经济,人们越来越重视新能源与可再生能源的应用。其中,风力发电是新能源技术中成熟、具规模开发条件和商业化发展强劲的发电方式之一。
绕线型双馈异步电机的结构带来的优缺点如下:
1. 流过转子电路中的功率为转差功率,一般只有发电机额定功率的1/4~1/3;
2. 可控制无功功率,通过独立控制转子励磁电流来解耦有功和无功功率,无须从电网励磁,而从转子电路中励磁;
3. 不可避免的要使用滑环和电刷。
在大型风电基地中的适用性
普通笼型异步电机的定子由铁心和定子绕组组成,转子采用笼型结构。早期的异步发电机首先要解决的问题是电机自励建压的问题,如在输出端连接适当大小的电容器给笼型感应发电机提供励磁,其缺点是无法连续调压,只能离散地调节励磁。随着电力电子技术的飞速发展,利用可控开关功率器件组成的电力电子变换器可以产生连续可调的无功功率,从而替代传统的单独的电容励磁,使得电力电子变换器与感应发电机相结合的发电技术得到了迅速的发展。
如基于背靠背变换器的并网型异步风力发电系统,其结构拓。定子绕组通过整流器和逆变器与电网或者负载相连:前者工作在整流状态,输出一个稳定的直流电压;后者工作在逆变状态,输出恒频恒压的交流电。
将电机转子和风力机相连,通过风力机的升速齿轮驱动转子超过同步速,即可将风力机的机械功率转化为电功率,馈送电网或供给负载。对普通笼型异步电机而言,通常有如下优缺点:
1.笼型异步电机因坚固的无刷结构,而具有机械简单、效率高、价格低廉和维护要求低的特点;
2.可适用于恒速发电和变速发电,可通过电力电子变换器获得无功励磁功率;
3.电机本体适用于大功率容量,可高达几兆瓦,具有良好的经济性;
4.有功和无功相耦合,影响系统性能。
为克服普通笼型异步电机发电系统中有功和无功相耦合对系统性能的不利影响,进一步发挥笼型异步电机的优势,美国田纳西理工大学的ojo教授于2000年提出一种新型笼型异步电机—定子双绕组异步电机(dwig),其定子上布置了两套绕组,一套为输出电能的功率绕组,一套为调节励磁的控制绕组,除容量不同外,它们的极数及绕组形式一样,且在电气上没有直接连接,仅通过磁场耦合。功率绕组,接有励磁电容,通过整流桥向负载供电;控制绕组,接有电力电子变换器,用于调节发电机内部磁场,使其在不同的工况下能稳定运行。
笼型异步电机在风电中应用广泛,如普通笼型异步电机可用于分布式风电场合;定子双绕组电机适用于海上风力发电等。
在分布式风电中的适用性 我国内陆有局部风能分布区,分布式风力发电具有较大市场。
在中小规模离网型、微网或并网式分布式风力发电中,普通笼型异步电机因价格优势、本体坚固和易实现变速恒频发电的特点,获得市场青睐。
特别是分布式系统中,通常整合多种资源,进行风光互补、风热互补能源开发,本身附带储能系统和电力电子变换器。笼型异步电机与电力电子变换器的优势配合,不仅可以提供励磁,还可以根据控制策略调控多端口(发电端、储能端、用电端)的功率流动,方便实现功率平衡以及自我控制、保护和管理,更可以充分发挥普通笼型异步电机性价比高的优势,从而具有更强的市场竞争力。
我国海岸线长,海上风电资源丰富,国家规划海上风电开采力度增强,为减小线损,高压直流输电系统具有一定优势,定子双绕组笼型异步电机可作为其发电机。
定子双绕组笼型异步电机的结构有如下优点:
1.转子为笼型转子,继承普通笼型异步电机结构简单坚固,维护较少的特点;
2.定子两套绕组相互电隔离,磁耦合,可以方便励磁调速;
3.电机侧的变换器容量为系统额定输出容量的1/3左右;
4.在合适的控制策略下,发电机系统能够在宽转速全负载的工况下输出稳定的直流电压,且具有优良的动静态特性。
dwig系统中,控制绕组侧控制励磁,功率绕组输出整流后的直流电能,适用于高压直流输电系统;系统可以在宽转速下实现风能大功率追踪,能够有效地利用海上风能丰富、风速较高、无静风期的特点;若进一步将控制侧直流母线与功率侧直流母线通过二极管并联,通过控制策略可提高系统在低风速下的风能利用率。
在海上风力发电高压直流输电系统中,定子双绕组发电系统优良的控制性能、宽转速范围的风能利用率和结实可靠的转子设计有很好的应用前景。
结论
双馈异步电机容易实现变速恒频发电,可以减小电力电子设备的投入,良好的并网优势使其在大型风电基地中应用广泛;普通笼型异步电机坚固可靠,中小功率风力发电中优势较为明显,主要体现在免维护性和经济性,而定子双绕组电机在海上高压直流风力发电系统中优势明显。
我国的新能源政策与发展表明,风力发电正进一步走向大容量大规模海陆资源兼顾开发,异步电机因自身特性将在未来的风能利用中得到更多应用;高性能的异步风力发电系统离不开电力电子变换技术的支撑与发展,应重点开发相关的电力电子变换装置及其控制技术。
燃气发电机组对焦炉煤气的要求在距离机组燃气进气调压阀前1m内,①焦炉煤气温度≤40℃;②焦炉煤气压力3~10kpa,压力变化速率≤1kpa/min;③焦炉煤气中氢气体积含量≤60%;④h2s≤200mg/nm3;⑤nh3≤20mg/nm3;⑥焦油含量≤50mg/nm3;⑦杂质粒度≤5μm,杂质含量≤30mg/nm3;⑧焦炉煤气中水份含量≤40g/nm3。
若可燃气体中含硫及氨成份较高,不仅会严重腐蚀火花塞电极,而且会使机油中酸值增加,腐蚀机组内部零件,同时易于生成沉淀物,增加对发动机的腐蚀和磨损。
柴油发电机组的气门构造类型
我国的天然气资源十分丰富,相对于我国丰富的天然气储量,天然气在我国一次能源消费中所占比例显得太小,未来具有大幅的潜力。在油田、气田以及机场、酒店、医院等领域越来越多把天然气发电机作为必不可少的备用发电设备,在断电期间它们能提供可靠的电源供应。只要天然气不断供应,发电机就会不停的发电。停电的几秒钟内,只要启动设备,就会有电源供应,关闭开关供电即停止—不需要用户作任何额外工作。设备全绝缘,并符合排放标准。可以预计,随着天然气供应的愈加充足、供应范围的不断扩大,近几年天然气发电将会得到一个飞速的发展。
燃气发电机组对瓦斯的要求在距离机组燃气进气调压阀前1m内,①瓦斯温度≤40℃;②瓦斯压力3~10kpa,压力变化速率≤1kpa/min;③瓦斯中甲烷体积含量不低于9%,变化速率≤2%∕min;④对于甲烷体积含量小于30%的瓦斯,甲烷与氧气体积含量之和不低于28%,氧气体积含量不低于16%;⑤杂质粒度≤5μm,杂质含量≤30mg/nm3。⑥硫化氢含量不大于200mg/m3。对于超出规定范围的气体需与厂商沟通,根据气体成份核实是否可行。
柴油发电机组气门
发动机的气门机构是整个配气系统的重要组成部分。它的作用是在发动机工作过程中,保证发动机在进气阶段能吸进尽量多的燃气混合气或空气,同时在发动机压缩 和做功阶段进行可靠地密封。因气门机构承受来自发动机燃烧时的高温,又受到来自进气的冷却,所以其工作环境极为恶劣。气门机构随发动机类型的不同,在结构 上差别很大。对四冲程发动机而言,因为发动机的转速不同,气门机构的型式也不一样。另外,由于燃烧时温度的作用,气门杆因直接受燃气加热而造成热膨胀,因 而为了使气门在任何情况下,甚至在发动机过热时都能保证可靠地密封,必须在气门头部预留一定的间隙,以便气门及其传动机构在受热伸长时气门仍能配合紧密。 气门间隙的大小目前厂家主要依靠经验方法决定。若该间隙过小,则发动机受热时可能会关闭不严,形成漏气以致使发动机功率下降和性能恶化。间隙过大,则会使 传动系的零件之间产生撞击,加速磨损,同时气门的打开时间减少,造成充量不足,致使发动机功率下降。因此,气门间隙的确定是非常重要的。
但是随着发动机技术的不断进步,各种不同气门机构层出不穷,故对气门间隙的要求也不同。比如,有的发动机配气机构需要气门间隙,而有的又不需要,有的发动 机给出冷态间隙,有的给出热态间隙,还有的同时给出冷热态间隙。种种不同的规定,常常给实际工作带来极大的不便。根据不同的气门机构,阐述气门机构 与气门间隙间的关系。
周奎
13580485988
qq: 2753117818